

Solid State Transformer: From Concepto Pilot Demonstration in a Decade enabled by HV SiC 10-15kV IGBTs and MOSFETs Magnetics Requirements

August 17th, 2023

Subhashish Bhattacharya, AMPED Director (NCSU)

Solid State Transformer installed at Naval Base [Port Heuneme, CA] SiC 10kV MOSFET based Mobile Utility Support Equipment [MUSE] SST 100kVA, 4.16kV/480V

Experimental results of MUSE SST HV converter at a DC-link voltage of 7.2

kV and 10kHz switching frequency (Ch1/Ch2: Line voltage (VYB/VRY); MUSE SST inside the container Ch3/Ch4/Ch7: R/Y/B inverter current; Ch8: DC bus voltage)

Power Density of MUSE SST

Lgrid (MV)

Gen-I SST: Topology & Prototype – 6.5kV Si-IGBT capabilities & challenges

Magnetics for SST

Magnetic materials

Material	Composition	Loss(w/kg) (10kHz, 0.2T)	Saturation B _{max} [mT]	Permeability (50Hz)	Max working Tem[°C]
Grain oriented silicon steel	Fe ₉₇ Si ₃	>1000	2000	2k-35k	120
Fe-amorphous alloy	Fe ₇₆ (Si.B) ₂₄	18	1560	6.5K-8K	150
High performance ferrite	MnZn	17	500	1.5K-15K	100/120
Nanocrystalline alloys	FeCuNbSiB	4.0	1230	20K-200K	120/180

• Critical parameters are high saturation flux density and low losses

Challenges: HV - HF Magnetics and Transformer design

Specifications and design parameters:

- Frequency: 3 kHz
- High voltage DC-link: 3.8kV
- Low voltage DC-link: 400V
- Power rating: 20/3=6.7kVA
- Turns ratio: 9.5
- Insulation: 15kV
- Number of primary turns:190
- Number of secondary turns:20
- Magnetizing Inductance: 235mH
- Leakage Inductance: 36mH

Electric field distribution (Winding voltage is evenly distributed to each wire in order)

Test Waveforms

Ch1=Vac_low side; Ch2=Vac_high side; Ch3= lac_low side; Ch4=lac_High side,

NC STATE UNIVERSI

	1			
	3.9KW	7.0KW	VOLTAGE (KV)	LEAKAGE CURRENT (nA)
CORE LOSS (W)	80.6	80.6	10	3.6
HV WINDING LOSS (W)	16.4	62.1	15	5.8
WINDING LOSS (W)	28.7	85.4	20	10.5
TOTAL (W)	126	228	25	16
EFFICIENCY	96.9%	96.8%		

Efficiency

Specification of transformers

SST gen-1

	prototype-1	prototype-2	prototype-3	
Core material	Metglas SA2605SA1	Metglas SA2605SA1	Metglas SA2605SA1	
Operating freq.		3 kHz		
Pin		7 kW		
kVA		10 kVA		
Pri. Volt.	3800 V			
Sec. Volt.	400 V			
Pri. Amp		2.6 A		
Sec. Amp		25 A		
Turns ratio [n:1]		9.5 : 1		
Bac	0.25 T	0.26 T	0.35 T	
Ac [cm ²]	69	60	40	
Window area [cm ²]	42	56.25	56.25	
Core volume [cm^3]	3472	2706	1804	
Core mass [kg]	24.9	19.4	13.0	
# of pri. turns	190	207	228	
# of sec. turns	20	22	24	
Airgap [mm]	0.5 (each side)			
Mag. Ind. [mH]	235	468.9	341.2	
Leak. Ind. [mH]	36	30.3	29.7	
Excitation current on pri. side	0.85 A	0.44 A	0.59 A	
Core loss	80 W	100 W	118 W	
Winding loss	147 W	94 W	81 W	
Total loss	227 W	194 W	199 W	
Efficiency	96.76 %	97.3 %	97.16	
Hot spot temp. on the surface with natural convection	43.1 ℃	43.5 ℃	46.5 °C	

prototype-1 (Top), prototype-2 (middle), prototype-3 (bottom)

LV-side voltage (purple,200V/div), HV-side Voltage (orange, 1kV/div) and current (green, 20A/div), Time (100us/div) of Prototype. 3 10kVA HV-HF Transformer

Gen-II SST: Topology – single stage enabled by SiC 15kV MOSFET

Gen-II SST: High Frequency Co-Axial Winding (CWT) Transformer - Design & Test at 20kHz, 30kW, 12kV/400V

DC-DC converter of the SST; 30kVA, 20 kHz CWT test - Yellow (Vo) 5kV/div, pink (Vi) 200V/div, green (Imag) 20A/div; Heat distribution after 90 min operation

Equivalent Circuit Modeling Magnetic field distribution and inductance calculation

Co-Axial Winding Transformer (CWT) prototype

- Switching response -

Integrated CWT based SST

13kV SiC MOSFET based SST with Inductor (4mH) integrated coaxial winding transformer

ICWT operation with 6kVdc-400Vdc dc/dc stage of SST

- Waveforms and temperature rise at 6.5kVA-

Waveforms of 6kVdc-400Vdc dc-dc conversion operation at 20kHz.

Heat distribution at 6.5kVA power transfer without an active cooling method after 70 minute operation

Hot spot temperature :170 °C after 70 minutes operation with 6.5kVA without active cooling method in dry-type -The upper temperature limit of wire insulation material, PFA (Perfluoroalkoxy), is 260°C

Gen-II 3-phase SST High-Frequency 10kHz Multi-Terminal Planar Transformer

Gen-II 3-phase SST High-Frequency 10kHz Multi-Terminal Planar Transformer

Proposed shell-type low-profile MF/MV transformer - Prototype-

Freq.	V _{dc1}	V _{dc2}	kVA _{phase}
10kHz	5500V	400V	5.5kVA

$ \begin{array}{c} N_1:N_2:N_3\\ (Y:Y:\Delta) \end{array} $	V _{phase}	B _{ac}
55: 7: 4	2.6kV	0.28T

No load loss (Open circuit)	Load loss (Short circuit)	Total loss
40W	78 W	118W

Experimental results

- Operation test, waveforms -

Introduction - Transformers -

1. The best known geometry regarding LC characteristics!

2. Ideal geometry with no electric, magnetic field and heat congestion.

3. Low parasitic elements

4. Electrically and magnetically well shielded.

1. Easy utilization of leakage inductance by geometric factor !

 $\frac{w \cdot l}{h}$

w=width of window area h=height of window area I = length of window area

2. Electrically and magnetically well shielded.

3. Simple geometry.

NC STATE UNIVERSITY

Mobile Utility Support Equipment (MUSE) SST [Navy ESTEP Program]: Ship to ShoreSST; ac grid tie for large manufacturing facilitiesThree High Frequency Transformers

Demonstration of the entire MUSE-SST system in the mobile container

Photograph of the entire MUSE-SST system in the laboratory

Photograph of the entire MUSE-SST system in the mobile container

NC STATE UNIVERSITY

Final Operation of the Entire MUSE-SST System

Operation at 3.5 kV MVDC; 600 V LVDC and an active power of 28 kW

Ch1: LV pole voltage (VRY); Ch2: LV voltage across filter capacitor (VRY-cap); Ch3: Current through LV R-phase; Ch4: Current through LV Y-phase.

Ch1: LV DC-link voltage (Vdc-LV); Ch2: MV pole voltage (VRY-MV); Ch3: LV pole voltage (VRY-LV); Ch4/Ch5: Current through MV R/Y-phase; Ch6/Ch7: Current through LV R/Y-phase.

Ch1: MV DC-link voltage (Vdc-MV); Ch2/Ch3: MV pole voltage (VRY/VYB); Ch4/Ch5: Inverter current through MV R/Y-phase; Ch6/Ch7: Grid current through MV R/Y-phase.

Ch1: LV pole voltage (VRY); Ch2: DC-link voltage across inverter; Ch3: Current through LV R-phase; Ch4: Current through LV Y-phase.

NC STATE UNIVERSITY

Final Operation of the Entire MUSE-SST System

Operation at 7.2 kV MVDC; 600 V LVDC and an active power of 30 kW

(Ch1/Ch4: MV pole voltage (V-RY/V-YB); Ch2: Grid current through R-phase; Ch3/Ch7: Inverter current through MV R/Y-phase; Ch8: MV DC-link voltage

(Ch1/Ch4: MV pole voltage (V-RY/V-YB); Ch2: Grid current through R-phase; Ch3/Ch7: Inverter current through MV R/Y-phase; Ch8: MV DC-link voltage

Operation of 3-phase DAB as MVdc/LVdc stage at higher voltages and different operating conditions

(Ch1/Ch6: Line-to-line voltage of MV/LV side (VRY); Ch2/Ch4: R/Y-phase LV side current; Ch3/Ch7: R/Y-phase MV side current; Ch5/Ch8: MV/LV side DC-link voltage)

High Frequency Transformers Design and Characterization

DAB Converter System

► Dual Active Bridge (Power flow from MV side to LV side)

NC STATE UNIVERSITY

Testing the High Frequency Transformer

Characterizing and testing the HFTs

- ► HFT is manufactured by IAP Research
- ► Characterization is carried out using an impedance analyzer
- Dimensions: 11.5 inches x 9.5 inches x 7 inches. Filled weight: 42 lbs

Value	
9 : 1.732	
95 V/656 V	
800 V/805 V	
2 A/55.24 A	
30 A/83 A	
20 kHz	
1.8 mH	
> 300 mH	
20 kV	
<1000 pF	

High Voltage (in, transformer) High Voltage (out) Low Voltage (in, transformer) Low Voltage (in, inductor) Faraday Shield Low Voltage (out)

Specifications of the HFT for the Dual Active Bridge converter system

Photograph of the HFT used in the Dual Active Bridge converter system. Dimensions: 11.5 inches x 9.5 inches x 7 inches. Filled weight: 42 lbs

- Insulation tested up to 15kV
- ► Core material : nanocrystalline
- ► Filled with oil to achieve the required insulation level and thermal cooling
- ► Transformer design is very challenging to meet size, minimal parasitics and high magnetizing inductances

High Frequency Transformer Characterization and Modeling

- Manufactured using nanocrystalline core
- ▶ Insulation and thermal management is provided by transformer oil
- Small hole is provided on top to monitor and replace the transformer oil when necessary
- ► Transformer houses the series-connected inductors in the same structure
- > Design is very challenging to meet size, minimal parasitics and high magnetizing inductances
- Characterization and modeling of the high frequency transformer (HFT)
 - Characterized using HP 4294A impedance analyzer
 - ▶ Impedance analysis for measuring various parameters including the parasitic elements
 - ► Short-circuit measurement, open-circuit measurement and coupling capacitance measurements

Inductance measurement curves of MV side inductor

Inductance measurement curves of LV side inductor

Frequency (Hz)

 10^{5}

Isolation Capacitance: 2.15 nF

 10^{4}

Low Voltage (in, transformer)

Low Voltage (in, inductor)

Photograph of the

Dimensions: 11.5

inches x 9.5 inches x

high frequency

7 inches. Filled

weight: 42 lbs

transformer

High Voltage (in, inductor)

High Voltage (in, transformer)

Faraday Shield

Low Voltage (out)

Capacitance (F)

solation

10

10

10-9

10-10

10³

High Voltage (out)

¹ A. Anurag, S. Acharya, S. Bhattacharya, T. R. Weatherford and A. Parker, "A Gen-3 10 kV SiC MOSFETs based Medium Voltage Three-Phase Dual Active Bridge Converter Enabling a Mobile Utility Support Equipment Solid State Transformer (MUSE-SST)," in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2021.3069810.

106

High Frequency Transformer Characterization and Modeling

- Characterization and modeling of the high frequency transformer
 - Impedance analysis for measuring various parameters including the parasitic elements
 - ► Short-circuit measurement, open-circuit measurement and coupling capacitance measurements

Equivalent model of the high frequency transformer

Key parameters of the high frequency transformer

Parameter	Value
$L_{\rm MV}, C_{\rm MV}$	350 μH, 19.5 nF
$L_{\rm LV}, C_{\rm LV}$	$62~\mu\mathrm{H},19.5~\mathrm{nF}$ - $22.4~\mathrm{nF}$
$L_{\rm MAG}, C_{\rm MAG}$	261 mH, 0.45 nF - 0.56 nF
C_{COUP}	$2.15 \ \mathrm{nF}$
$L_{\rm MV,L}$	$40 \ \mu H$
$L_{ m LV,L}$	$1.5 \ \mu H$

Impedance curves of primary winding with secondary side open

¹ A. Anurag, S. Acharya, S. Bhattacharya, T. R. Weatherford and A. Parker, "A Gen-3 10 kV SiC MOSFETs based Medium Voltage Three-Phase Dual Active Bridge Converter Enabling a Mobile Utility Support Equipment Solid State Transformer (MUSE-SST)," in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2021.3069810.

50kW DC-DC Dual Active Bridge [DAB] Converter [400V: 1000V]

Computer Engineering

POWER ELECTRONICS RESEARCH GROUP SUBHASHISH BHATTACHARYA

Coaxial Transformer: Tubular Winding Capacitance

- Layered secondary windings have increased self capacitance, but careful winding selection can minimize capacitive stored energy.
- Assume:
 - Flat plate capacitance is dominant.
 - Layer-to-layer and layer-to-core capacitance is the same.
- Capacitive shielding of inner winding layers results in minimal capacitive stored energy.

SYSTEMS CENTER

Optimal Co-Design of DAB: 50kW results

Rated Power	50 kW	
Maximum Phase Shift	30 deg	
Switching Frequency	40 kHz	
HV Bus Voltage	1000 V	
LV Bus Voltage	400 V	
HV Modules	Wolfspeed CAS300M17BM2	
LV Modules	Wolfspeed CAB425M12XM3	
LV Capacitance	200 µF	
HV Capacitance	80 µF	
Transformer Turns	15:6	
Transformer Leakage	34.7 μH	
Inductance		
Transformer Magnetizing	30.0 mH	
Inductance		
[
Primary Turns	15	
Primary Conductor	1650x38 ga Litz	
Secondary Turns	6	
Secondary Layers	2	
Secondary Layer 1 Conductor	10 mil copper foil	
Secondary Layer 2 Conductor	20 mil copper foil	
Core Inner Diameter	70 mm	
Core Outer Diameter	73 mm	
Core Total Length	700 mm	
Core Mass	1.68 kg	
Transformer Build Details		
	Build Details	
	Build Details	

System Build

Welded foil end connections resulted in winding resistance only 15% higher than ideal

Composite winding tube has direct copper-air cooling

Detail of foil end connections, insulation, and primary Litz winding

Second composite tube prior to transformer assembly

Controller communications and fault response testing

System components (except controller) on build plate

NC STATE UNIVERSITY Electrical and Computer Engineering

POWER ELECTRONICS RESEARCH GROUP SUBHASHISH BHATTACHARYA

1000V/ 20kW MVDC Contactless Power Supply

Specification	Value		
Nominal Input Voltage	1000V		
Nominal Output	48V		
Voltage			
Nominal Output	400A		
Gumont	100/1		
Current			
Rated Power	20kW		
Efficiency Target	95% @ 50% Load		
	91% 100% Load		
1000V chosen for validation phase			
Opens the pathway to 2000%/@1000%Woad			
V00V			

Gapped Transformer Design Overview

Integration of PV and ESS using TAB

- Three-Limb split winding transformer.
 - PV and ESS windings are split into two equal halves on the side two limbs.
 - Two equal halves have same number of turns and the geometric dimension of the limbs are also same.
 - Transformer design is optimized based on the lossvolume using a leakage inductance and parasitic capacitance model.
 - Two laboratory prototypes were built for 50kHz and 100kHz switching frequency.

50 kHz prototype

100 kHz prototype

POWER ELECTRONICS RESEARCH GROUP SUBHASHISH BHATTACHARYA

4.2 Inverter-fed High-Speed Motor Drive Efficiency Evaluation (In Progress)

[4] P. P. Das, S. Satpathy, S. Bhattacharya and V. Veliadis, "Generalized Control Technique for Three-Level Inverter Fed Six-Phase Permanent Magnet Synchronous Machines Under Fault Conditions," 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022, pp. 1-8, doi: 10.1109/ECCE50734.2022.9947672.

Computer Engineering

34

High speed machine (HSM) testbeds

Moto r

LV HSM-1

LV HSM-2

LV HSM-3


```
MV HSM-4
```

	LV HSM-1 Testbed 1	LV HSM-2 Testbed 2	LV HSM-3 Testbed 3	MV HSM-4 Testbed
Power	1.39kW	5kW	10kW	15kW
Voltage (L-L)	400V (3ph-3ph M-G set)	560V (3ph-3ph M-G set)	565V (Open winding, 3ph and 6ph M-G set); one HSM is 3-phase and other 6- phase	1100V (Open winding, 3ph-3ph M-G set)
Poles	10	4	8	6
Speed	14,000rpm	30,000rpm	21,000 rpm	25,000 rpm
Fundamental frequency	1167Hz	1000Hz	1400 Hz	1250Hz

15kV SiC IGBT based 3-phase SST with 13.8kV MV AC grid tie: Transformerless Intelligent Power Substation (TIPS)

- Three-Phase SiC Devices based Solid State alternative to conventional line frequency transformer for interconnecting 13.8 kV distribution grid with 480 V utility grid.
- Smaller and Light Weight High Frequency Transformer operating at 10 kHz used for Isolation.
- Advantages Better Power Quality, Controllability, VAR Compensation, Small Size/Light Weight, lower Cooling Requirement, Integration of Renewable Energy Sources/Storage System

Edge CH1 _

TIPS Converter Laboratory Demonstration: AFEC waveforms for 4.16 kV MV AC grid tie operation with 8 kV MV dc bus and 9.6 kW load

70kVA, 10kHz, 22kV/11kV/800V Transformer

1200V SiC MOSFET LV Side Converter

RY-grid voltage and R-phase grid current

Grid line current (5 A/div)

TIPS Converter Laboratory Demonstration: DAB waveforms for 4.16 kV MV ac grid tie operation with 8 kV MV dc bus, 480 V LV dc bus voltage and 9.6 kW load

- All waveforms captured at the HF transformer terminals
- Ripple in the DAB currents is due to the HF transformer parasitics 70kVA, 10kHz, 22kV/11kV/800V Transformer

MV – Medium Frequency Transformer Specifications

Parameter	Values	
Power	35/70 kVA,11 kV/22 kV dual mode	
D.'	9.6 kV RMS, 16.6 kV peak, 8 A RMS,	
Primary	12A peak	
	360 V RMS, 605 V peak, 52 A RMS, 83	
Secondary – Y winding 1,2	A peak	
	625 V RMS, 1050 V peak, 31 A RMS,	
Secondary – Delta winding 1,2	46 A peak	
Frequency	10 kHz	
Leakage inductance	80 μH (from secondary side)	
	280 mH (from primary side), Max.	
Magnetization inductance	magnetizing current 15% of full load	
	current	
Parasitic capacitance	<500 "E	
(inter turn from primary)	<000 pF	
Isolation primary to secondary	100 kV RMS	
Cooling	Oil cooling	
Efficiency	>99%	

• Turns ratio, switching frequency, leakage inductance are selected for optimum operation of DAB

Medium Frequency Transformer for DAB

22/11 kV, 10 kHz, 70 kVA 1-Φ Transformer Transformer Connections

- Insulation tested up to 22kV
- Oil filled transformer
- Three 1-Φ transformers are connected in Y/Y-Δ for 3-Φ DAB

65 kg dry 95 kg oil filled

Transformer Winding Arrangement and Equivalent Circuit with Parasitics

Transformer Winding Arrangement

Verification of Measured Equivalent Circuit using Spice Simulation

Open Circuit Secondaries

Actual Impedance Plot using Impedance Analyzer

Impedance Plot using Spice Simulation

Verification of Measured Equivalent Circuit using Spice Simulation

Short Circuit Secondaries

Actual Impedance Plot using Impedance Analyzer Impedance Plot using spice Simulation

Hardware Demonstration

Hardware prototype of the ΔY connected 2L-3L DAB3 converter

Table: Specifications for the Hardware Setup

Parameter	Value (Unit)
Rated Power, P	5 (kW)
Primary DC-link Voltage, V_p	400 (V)
Secondary DC-link Voltage, Vs	1500 (V)
Switching frequency, f_s	50 (kHz)
Primary DC-link Capacitance, C_p	180 (μ F)
Secondary DC-link Capacitance, C_s	12 (µF)
Turns Ratio, N	1.88
Inductance, L_{lk1}	140 (µH)
HFT Leakage Inductance, L_{lk2}	10 (µH)
HFT Magnetizing Inductance, L_m	3.18 (mH)
leader Desistant of 50	l.Ohma and

*Balancing Resistors of 50 kOhm are implemented on the secondary side.

Steady-state waveforms of ΔY connected Two-level to Three-level Three Phase Dual Active Bridge (2L-3L DAB3) at a rated power of 5 kW and the operating point (D2, φ) = (0.34, 23.8°).

Open-circuit Fault in DAB3

Causes volt-sec imbalance across phase inductors

- Produces DC bias in AC phase currents (i_A, i_B, i_C)
- Effect of primary side fault >> secondary side fault

Effect of Open-circuit Fault on the Transformer

Primary fault (T_{Al}) - Magnetization currents

$$time_available = -\tau \times \ln\left(1 - \frac{i_{sat} - i_{mA_pk(nor)}}{I_{DC}}\right)$$
$$i_{mX_avg} = I_{DC}(1 - e^{-t/\tau})$$

Non-trivial relationship
$$\left(\tau \neq \frac{L_{mX}}{R_{winding}} \right) \quad \tau = f\left(\phi, \frac{L_{mag}}{L_{leak}} \right)$$
, Dead time

No-fault mode

- No dc bias
- Balanced around (0,0)
- BH loops overlap

Fault mode

- DC bias
- Movement away from (0,0)
- Saturation!

First of its kind study for isolated dc-dc converters!

Monolithic SiC-based Bidirectional FET (BiDFET) Switch: 1200V, 20A DIE

Monolithic SiC BiDFET enabled grid-connected power conversion system for PV

Cyclo-converter based 1-phase and 3-phase grid connected PV inverter enabled by Monolithically integrated SiC 4-QPS at 1200V, 10-25A

* Advanced packaging of single switch module and half-bridge switch module

Figure 1: (a) Conventional power architecture for DC-AC conversion, (b) High-frequency link single phase inverter using 4-QPS enabled cyclo-converter (c) High-frequency link 3-phase inverter using 4-QPS enabled cyclo-converter.

2.1 kW, 1-ph grid connected converter prototype enabled by 1200V, 20A SiC BiDFET

Hardware prototype of the AC/DC DAB converter

High frequency transformer voltages/current and grid side current at 100% load at 240 VAC voltage.

- Full load operation at 400V input, 240V RMS output at 2.1 kW
- Total harmonic distortion in grid-side current: 4.8%
- Power factor: 0.9998

BiDFET (or 4-QPS) based AC-DC converter development

10 kW, 3-ph PV inverter prototype enabled by 1200V, 20A BiDFET half-bridge module

BiDFET (or 4-QPS) based AC-DC converter development

10 kW, 3-ph PV inverter prototype enabled by 1200V, 20A BiDFET half-bridge module

Power Analyzer

- Collaboration with industry please join AMPED
- Reference designs for different applications
- Applications: EV Charging, EMI filters, CMC filters, DC-DC converters, Server power supplies for Data Centers

https://research.ece.ncsu.edu/bhattacharya/ https://ece.ncsu.edu/people/sbhatta4/

Email: sbhatta4@ncsu.edu

Thank You!!!

Questions

 Ack to all my PhD students, UG Research students and Post-Doctoral Scholars in my group